/* * Copyright (C) 2007 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_NDEBUG 0 #define LOG_TAG "BootAnimation" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "BootAnimation.h" #define ANIM_PATH_MAX 255 #define STR(x) #x #define STRTO(x) STR(x) namespace android { using ui::DisplayMode; static const char OEM_BOOTANIMATION_FILE[] = "/oem/media/bootanimation.zip"; static const char PRODUCT_BOOTANIMATION_DARK_FILE[] = "/product/media/bootanimation-dark.zip"; static const char PRODUCT_BOOTANIMATION_FILE[] = "/product/media/bootanimation.zip"; static const char SYSTEM_BOOTANIMATION_FILE[] = "/system/media/bootanimation.zip"; static const char APEX_BOOTANIMATION_FILE[] = "/apex/com.android.bootanimation/etc/bootanimation.zip"; static const char PRODUCT_ENCRYPTED_BOOTANIMATION_FILE[] = "/product/media/bootanimation-encrypted.zip"; static const char SYSTEM_ENCRYPTED_BOOTANIMATION_FILE[] = "/system/media/bootanimation-encrypted.zip"; static const char OEM_SHUTDOWNANIMATION_FILE[] = "/oem/media/shutdownanimation.zip"; static const char PRODUCT_SHUTDOWNANIMATION_FILE[] = "/product/media/shutdownanimation.zip"; static const char SYSTEM_SHUTDOWNANIMATION_FILE[] = "/system/media/shutdownanimation.zip"; static constexpr const char* PRODUCT_USERSPACE_REBOOT_ANIMATION_FILE = "/product/media/userspace-reboot.zip"; static constexpr const char* OEM_USERSPACE_REBOOT_ANIMATION_FILE = "/oem/media/userspace-reboot.zip"; static constexpr const char* SYSTEM_USERSPACE_REBOOT_ANIMATION_FILE = "/system/media/userspace-reboot.zip"; static const char BOOTANIM_DATA_DIR_PATH[] = "/data/bootanim"; static const char BOOTANIM_TIME_DIR_NAME[] = "time"; static const char BOOTANIM_TIME_DIR_PATH[] = "/data/bootanim/time"; static const char CLOCK_FONT_ASSET[] = "images/clock_font.png"; static const char CLOCK_FONT_ZIP_NAME[] = "clock_font.png"; static const char PROGRESS_FONT_ASSET[] = "images/progress_font.png"; static const char PROGRESS_FONT_ZIP_NAME[] = "progress_font.png"; static const char LAST_TIME_CHANGED_FILE_NAME[] = "last_time_change"; static const char LAST_TIME_CHANGED_FILE_PATH[] = "/data/bootanim/time/last_time_change"; static const char ACCURATE_TIME_FLAG_FILE_NAME[] = "time_is_accurate"; static const char ACCURATE_TIME_FLAG_FILE_PATH[] = "/data/bootanim/time/time_is_accurate"; static const char TIME_FORMAT_12_HOUR_FLAG_FILE_PATH[] = "/data/bootanim/time/time_format_12_hour"; // Java timestamp format. Don't show the clock if the date is before 2000-01-01 00:00:00. static const long long ACCURATE_TIME_EPOCH = 946684800000; static constexpr char FONT_BEGIN_CHAR = ' '; static constexpr char FONT_END_CHAR = '~' + 1; static constexpr size_t FONT_NUM_CHARS = FONT_END_CHAR - FONT_BEGIN_CHAR + 1; static constexpr size_t FONT_NUM_COLS = 16; static constexpr size_t FONT_NUM_ROWS = FONT_NUM_CHARS / FONT_NUM_COLS; static const int TEXT_CENTER_VALUE = INT_MAX; static const int TEXT_MISSING_VALUE = INT_MIN; static const char EXIT_PROP_NAME[] = "service.bootanim.exit"; static const char PROGRESS_PROP_NAME[] = "service.bootanim.progress"; static const char DISPLAYS_PROP_NAME[] = "persist.service.bootanim.displays"; static const char CLOCK_ENABLED_PROP_NAME[] = "persist.sys.bootanim.clock.enabled"; static const int ANIM_ENTRY_NAME_MAX = ANIM_PATH_MAX + 1; static constexpr size_t TEXT_POS_LEN_MAX = 16; static const int DYNAMIC_COLOR_COUNT = 4; static const char U_TEXTURE[] = "uTexture"; static const char U_FADE[] = "uFade"; static const char U_CROP_AREA[] = "uCropArea"; static const char U_START_COLOR_PREFIX[] = "uStartColor"; static const char U_END_COLOR_PREFIX[] = "uEndColor"; static const char U_COLOR_PROGRESS[] = "uColorProgress"; static const char A_UV[] = "aUv"; static const char A_POSITION[] = "aPosition"; static const char VERTEX_SHADER_SOURCE[] = R"( precision mediump float; attribute vec4 aPosition; attribute highp vec2 aUv; varying highp vec2 vUv; void main() { gl_Position = aPosition; vUv = aUv; })"; static const char IMAGE_FRAG_DYNAMIC_COLORING_SHADER_SOURCE[] = R"( precision mediump float; const float cWhiteMaskThreshold = 0.05; uniform sampler2D uTexture; uniform float uFade; uniform float uColorProgress; uniform vec4 uStartColor0; uniform vec4 uStartColor1; uniform vec4 uStartColor2; uniform vec4 uStartColor3; uniform vec4 uEndColor0; uniform vec4 uEndColor1; uniform vec4 uEndColor2; uniform vec4 uEndColor3; varying highp vec2 vUv; void main() { vec4 mask = texture2D(uTexture, vUv); float r = mask.r; float g = mask.g; float b = mask.b; float a = mask.a; // If all channels have values, render pixel as a shade of white. float useWhiteMask = step(cWhiteMaskThreshold, r) * step(cWhiteMaskThreshold, g) * step(cWhiteMaskThreshold, b) * step(cWhiteMaskThreshold, a); vec4 color = r * mix(uStartColor0, uEndColor0, uColorProgress) + g * mix(uStartColor1, uEndColor1, uColorProgress) + b * mix(uStartColor2, uEndColor2, uColorProgress) + a * mix(uStartColor3, uEndColor3, uColorProgress); color = mix(color, vec4(vec3((r + g + b + a) * 0.25), 1.0), useWhiteMask); gl_FragColor = vec4(color.x, color.y, color.z, (1.0 - uFade)) * color.a; })"; static const char IMAGE_FRAG_SHADER_SOURCE[] = R"( precision mediump float; uniform sampler2D uTexture; uniform float uFade; varying highp vec2 vUv; void main() { vec4 color = texture2D(uTexture, vUv); gl_FragColor = vec4(color.x, color.y, color.z, (1.0 - uFade)) * color.a; })"; static const char TEXT_FRAG_SHADER_SOURCE[] = R"( precision mediump float; uniform sampler2D uTexture; uniform vec4 uCropArea; varying highp vec2 vUv; void main() { vec2 uv = vec2(mix(uCropArea.x, uCropArea.z, vUv.x), mix(uCropArea.y, uCropArea.w, vUv.y)); gl_FragColor = texture2D(uTexture, uv); })"; static GLfloat quadPositions[] = { -0.5f, -0.5f, +0.5f, -0.5f, +0.5f, +0.5f, +0.5f, +0.5f, -0.5f, +0.5f, -0.5f, -0.5f }; static GLfloat quadUVs[] = { 0.0f, 1.0f, 1.0f, 1.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f }; // --------------------------------------------------------------------------- BootAnimation::BootAnimation(sp callbacks) : Thread(false), mLooper(new Looper(false)), mClockEnabled(true), mTimeIsAccurate(false), mTimeFormat12Hour(false), mTimeCheckThread(nullptr), mCallbacks(callbacks) { mSession = new SurfaceComposerClient(); std::string powerCtl = android::base::GetProperty("sys.powerctl", ""); if (powerCtl.empty()) { mShuttingDown = false; } else { mShuttingDown = true; } ALOGD("%sAnimationStartTiming start time: %" PRId64 "ms", mShuttingDown ? "Shutdown" : "Boot", elapsedRealtime()); } BootAnimation::~BootAnimation() { if (mAnimation != nullptr) { releaseAnimation(mAnimation); mAnimation = nullptr; } ALOGD("%sAnimationStopTiming start time: %" PRId64 "ms", mShuttingDown ? "Shutdown" : "Boot", elapsedRealtime()); } void BootAnimation::onFirstRef() { status_t err = mSession->linkToComposerDeath(this); SLOGE_IF(err, "linkToComposerDeath failed (%s) ", strerror(-err)); if (err == NO_ERROR) { // Load the animation content -- this can be slow (eg 200ms) // called before waitForSurfaceFlinger() in main() to avoid wait ALOGD("%sAnimationPreloadTiming start time: %" PRId64 "ms", mShuttingDown ? "Shutdown" : "Boot", elapsedRealtime()); preloadAnimation(); ALOGD("%sAnimationPreloadStopTiming start time: %" PRId64 "ms", mShuttingDown ? "Shutdown" : "Boot", elapsedRealtime()); } } sp BootAnimation::session() const { return mSession; } void BootAnimation::binderDied(const wp&) { // woah, surfaceflinger died! SLOGD("SurfaceFlinger died, exiting..."); // calling requestExit() is not enough here because the Surface code // might be blocked on a condition variable that will never be updated. kill( getpid(), SIGKILL ); requestExit(); } static void* decodeImage(const void* encodedData, size_t dataLength, AndroidBitmapInfo* outInfo, bool premultiplyAlpha) { AImageDecoder* decoder = nullptr; AImageDecoder_createFromBuffer(encodedData, dataLength, &decoder); if (!decoder) { return nullptr; } const AImageDecoderHeaderInfo* info = AImageDecoder_getHeaderInfo(decoder); outInfo->width = AImageDecoderHeaderInfo_getWidth(info); outInfo->height = AImageDecoderHeaderInfo_getHeight(info); outInfo->format = AImageDecoderHeaderInfo_getAndroidBitmapFormat(info); outInfo->stride = AImageDecoder_getMinimumStride(decoder); outInfo->flags = 0; if (!premultiplyAlpha) { AImageDecoder_setUnpremultipliedRequired(decoder, true); } const size_t size = outInfo->stride * outInfo->height; void* pixels = malloc(size); int result = AImageDecoder_decodeImage(decoder, pixels, outInfo->stride, size); AImageDecoder_delete(decoder); if (result != ANDROID_IMAGE_DECODER_SUCCESS) { free(pixels); return nullptr; } return pixels; } status_t BootAnimation::initTexture(Texture* texture, AssetManager& assets, const char* name, bool premultiplyAlpha) { Asset* asset = assets.open(name, Asset::ACCESS_BUFFER); if (asset == nullptr) return NO_INIT; AndroidBitmapInfo bitmapInfo; void* pixels = decodeImage(asset->getBuffer(false), asset->getLength(), &bitmapInfo, premultiplyAlpha); auto pixelDeleter = std::unique_ptr{ pixels, free }; asset->close(); delete asset; if (!pixels) { return NO_INIT; } const int w = bitmapInfo.width; const int h = bitmapInfo.height; texture->w = w; texture->h = h; glGenTextures(1, &texture->name); glBindTexture(GL_TEXTURE_2D, texture->name); switch (bitmapInfo.format) { case ANDROID_BITMAP_FORMAT_A_8: glTexImage2D(GL_TEXTURE_2D, 0, GL_ALPHA, w, h, 0, GL_ALPHA, GL_UNSIGNED_BYTE, pixels); break; case ANDROID_BITMAP_FORMAT_RGBA_4444: glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, w, h, 0, GL_RGBA, GL_UNSIGNED_SHORT_4_4_4_4, pixels); break; case ANDROID_BITMAP_FORMAT_RGBA_8888: glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, w, h, 0, GL_RGBA, GL_UNSIGNED_BYTE, pixels); break; case ANDROID_BITMAP_FORMAT_RGB_565: glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, w, h, 0, GL_RGB, GL_UNSIGNED_SHORT_5_6_5, pixels); break; default: break; } glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); return NO_ERROR; } status_t BootAnimation::initTexture(FileMap* map, int* width, int* height, bool premultiplyAlpha) { AndroidBitmapInfo bitmapInfo; void* pixels = decodeImage(map->getDataPtr(), map->getDataLength(), &bitmapInfo, premultiplyAlpha); auto pixelDeleter = std::unique_ptr{ pixels, free }; // FileMap memory is never released until application exit. // Release it now as the texture is already loaded and the memory used for // the packed resource can be released. delete map; if (!pixels) { return NO_INIT; } const int w = bitmapInfo.width; const int h = bitmapInfo.height; int tw = 1 << (31 - __builtin_clz(w)); int th = 1 << (31 - __builtin_clz(h)); if (tw < w) tw <<= 1; if (th < h) th <<= 1; switch (bitmapInfo.format) { case ANDROID_BITMAP_FORMAT_RGBA_8888: if (!mUseNpotTextures && (tw != w || th != h)) { glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, tw, th, 0, GL_RGBA, GL_UNSIGNED_BYTE, nullptr); glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, w, h, GL_RGBA, GL_UNSIGNED_BYTE, pixels); } else { glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, w, h, 0, GL_RGBA, GL_UNSIGNED_BYTE, pixels); } break; case ANDROID_BITMAP_FORMAT_RGB_565: if (!mUseNpotTextures && (tw != w || th != h)) { glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, tw, th, 0, GL_RGB, GL_UNSIGNED_SHORT_5_6_5, nullptr); glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, w, h, GL_RGB, GL_UNSIGNED_SHORT_5_6_5, pixels); } else { glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, w, h, 0, GL_RGB, GL_UNSIGNED_SHORT_5_6_5, pixels); } break; default: break; } glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); *width = w; *height = h; return NO_ERROR; } class BootAnimation::DisplayEventCallback : public LooperCallback { BootAnimation* mBootAnimation; public: DisplayEventCallback(BootAnimation* bootAnimation) { mBootAnimation = bootAnimation; } int handleEvent(int /* fd */, int events, void* /* data */) { if (events & (Looper::EVENT_ERROR | Looper::EVENT_HANGUP)) { ALOGE("Display event receiver pipe was closed or an error occurred. events=0x%x", events); return 0; // remove the callback } if (!(events & Looper::EVENT_INPUT)) { ALOGW("Received spurious callback for unhandled poll event. events=0x%x", events); return 1; // keep the callback } constexpr int kBufferSize = 100; DisplayEventReceiver::Event buffer[kBufferSize]; ssize_t numEvents; do { numEvents = mBootAnimation->mDisplayEventReceiver->getEvents(buffer, kBufferSize); for (size_t i = 0; i < static_cast(numEvents); i++) { const auto& event = buffer[i]; if (event.header.type == DisplayEventReceiver::DISPLAY_EVENT_HOTPLUG) { SLOGV("Hotplug received"); if (!event.hotplug.connected) { // ignore hotplug disconnect continue; } auto token = SurfaceComposerClient::getPhysicalDisplayToken( event.header.displayId); if (token != mBootAnimation->mDisplayToken) { // ignore hotplug of a secondary display continue; } DisplayMode displayMode; const status_t error = SurfaceComposerClient::getActiveDisplayMode( mBootAnimation->mDisplayToken, &displayMode); if (error != NO_ERROR) { SLOGE("Can't get active display mode."); } mBootAnimation->resizeSurface(displayMode.resolution.getWidth(), displayMode.resolution.getHeight()); } } } while (numEvents > 0); return 1; // keep the callback } }; EGLConfig BootAnimation::getEglConfig(const EGLDisplay& display) { const EGLint attribs[] = { EGL_RED_SIZE, 8, EGL_GREEN_SIZE, 8, EGL_BLUE_SIZE, 8, EGL_DEPTH_SIZE, 0, EGL_NONE }; EGLint numConfigs; EGLConfig config; eglChooseConfig(display, attribs, &config, 1, &numConfigs); return config; } ui::Size BootAnimation::limitSurfaceSize(int width, int height) const { ui::Size limited(width, height); bool wasLimited = false; const float aspectRatio = float(width) / float(height); if (mMaxWidth != 0 && width > mMaxWidth) { limited.height = mMaxWidth / aspectRatio; limited.width = mMaxWidth; wasLimited = true; } if (mMaxHeight != 0 && limited.height > mMaxHeight) { limited.height = mMaxHeight; limited.width = mMaxHeight * aspectRatio; wasLimited = true; } SLOGV_IF(wasLimited, "Surface size has been limited to [%dx%d] from [%dx%d]", limited.width, limited.height, width, height); return limited; } status_t BootAnimation::readyToRun() { mAssets.addDefaultAssets(); mDisplayToken = SurfaceComposerClient::getInternalDisplayToken(); if (mDisplayToken == nullptr) return NAME_NOT_FOUND; DisplayMode displayMode; const status_t error = SurfaceComposerClient::getActiveDisplayMode(mDisplayToken, &displayMode); if (error != NO_ERROR) return error; mMaxWidth = android::base::GetIntProperty("ro.surface_flinger.max_graphics_width", 0); mMaxHeight = android::base::GetIntProperty("ro.surface_flinger.max_graphics_height", 0); ui::Size resolution = displayMode.resolution; resolution = limitSurfaceSize(resolution.width, resolution.height); // create the native surface sp control = session()->createSurface(String8("BootAnimation"), resolution.getWidth(), resolution.getHeight(), PIXEL_FORMAT_RGB_565); SurfaceComposerClient::Transaction t; // this guest property specifies multi-display IDs to show the boot animation // multiple ids can be set with comma (,) as separator, for example: // setprop persist.boot.animation.displays 19260422155234049,19261083906282754 Vector physicalDisplayIds; char displayValue[PROPERTY_VALUE_MAX] = ""; property_get(DISPLAYS_PROP_NAME, displayValue, ""); bool isValid = displayValue[0] != '\0'; if (isValid) { char *p = displayValue; while (*p) { if (!isdigit(*p) && *p != ',') { isValid = false; break; } p ++; } if (!isValid) SLOGE("Invalid syntax for the value of system prop: %s", DISPLAYS_PROP_NAME); } if (isValid) { std::istringstream stream(displayValue); for (PhysicalDisplayId id; stream >> id.value; ) { physicalDisplayIds.add(id); if (stream.peek() == ',') stream.ignore(); } // In the case of multi-display, boot animation shows on the specified displays // in addition to the primary display const auto ids = SurfaceComposerClient::getPhysicalDisplayIds(); for (const auto id : physicalDisplayIds) { if (std::find(ids.begin(), ids.end(), id) != ids.end()) { if (const auto token = SurfaceComposerClient::getPhysicalDisplayToken(id)) { t.setDisplayLayerStack(token, ui::DEFAULT_LAYER_STACK); } } } t.setLayerStack(control, ui::DEFAULT_LAYER_STACK); } t.setLayer(control, 0x40000000) .apply(); sp s = control->getSurface(); // initialize opengl and egl EGLDisplay display = eglGetDisplay(EGL_DEFAULT_DISPLAY); eglInitialize(display, nullptr, nullptr); EGLConfig config = getEglConfig(display); EGLSurface surface = eglCreateWindowSurface(display, config, s.get(), nullptr); // Initialize egl context with client version number 2.0. EGLint contextAttributes[] = {EGL_CONTEXT_CLIENT_VERSION, 2, EGL_NONE}; EGLContext context = eglCreateContext(display, config, nullptr, contextAttributes); EGLint w, h; eglQuerySurface(display, surface, EGL_WIDTH, &w); eglQuerySurface(display, surface, EGL_HEIGHT, &h); if (eglMakeCurrent(display, surface, surface, context) == EGL_FALSE) return NO_INIT; mDisplay = display; mContext = context; mSurface = surface; mInitWidth = mWidth = w; mInitHeight = mHeight = h; mFlingerSurfaceControl = control; mFlingerSurface = s; mTargetInset = -1; projectSceneToWindow(); // Register a display event receiver mDisplayEventReceiver = std::make_unique(); status_t status = mDisplayEventReceiver->initCheck(); SLOGE_IF(status != NO_ERROR, "Initialization of DisplayEventReceiver failed with status: %d", status); mLooper->addFd(mDisplayEventReceiver->getFd(), 0, Looper::EVENT_INPUT, new DisplayEventCallback(this), nullptr); return NO_ERROR; } void BootAnimation::projectSceneToWindow() { glViewport(0, 0, mWidth, mHeight); glScissor(0, 0, mWidth, mHeight); } void BootAnimation::resizeSurface(int newWidth, int newHeight) { // We assume this function is called on the animation thread. if (newWidth == mWidth && newHeight == mHeight) { return; } SLOGV("Resizing the boot animation surface to %d %d", newWidth, newHeight); eglMakeCurrent(mDisplay, EGL_NO_SURFACE, EGL_NO_SURFACE, EGL_NO_CONTEXT); eglDestroySurface(mDisplay, mSurface); mFlingerSurfaceControl->updateDefaultBufferSize(newWidth, newHeight); const auto limitedSize = limitSurfaceSize(newWidth, newHeight); mWidth = limitedSize.width; mHeight = limitedSize.height; SurfaceComposerClient::Transaction t; t.setSize(mFlingerSurfaceControl, mWidth, mHeight); t.apply(); EGLConfig config = getEglConfig(mDisplay); EGLSurface surface = eglCreateWindowSurface(mDisplay, config, mFlingerSurface.get(), nullptr); if (eglMakeCurrent(mDisplay, surface, surface, mContext) == EGL_FALSE) { SLOGE("Can't make the new surface current. Error %d", eglGetError()); return; } projectSceneToWindow(); mSurface = surface; } bool BootAnimation::preloadAnimation() { findBootAnimationFile(); if (!mZipFileName.isEmpty()) { mAnimation = loadAnimation(mZipFileName); return (mAnimation != nullptr); } return false; } bool BootAnimation::findBootAnimationFileInternal(const std::vector &files) { for (const std::string& f : files) { if (access(f.c_str(), R_OK) == 0) { mZipFileName = f.c_str(); return true; } } return false; } void BootAnimation::findBootAnimationFile() { // If the device has encryption turned on or is in process // of being encrypted we show the encrypted boot animation. char decrypt[PROPERTY_VALUE_MAX]; property_get("vold.decrypt", decrypt, ""); bool encryptedAnimation = atoi(decrypt) != 0 || !strcmp("trigger_restart_min_framework", decrypt); if (!mShuttingDown && encryptedAnimation) { static const std::vector encryptedBootFiles = { PRODUCT_ENCRYPTED_BOOTANIMATION_FILE, SYSTEM_ENCRYPTED_BOOTANIMATION_FILE, }; if (findBootAnimationFileInternal(encryptedBootFiles)) { return; } } const bool playDarkAnim = android::base::GetIntProperty("ro.boot.theme", 0) == 1; static const std::vector bootFiles = { APEX_BOOTANIMATION_FILE, playDarkAnim ? PRODUCT_BOOTANIMATION_DARK_FILE : PRODUCT_BOOTANIMATION_FILE, OEM_BOOTANIMATION_FILE, SYSTEM_BOOTANIMATION_FILE }; static const std::vector shutdownFiles = { PRODUCT_SHUTDOWNANIMATION_FILE, OEM_SHUTDOWNANIMATION_FILE, SYSTEM_SHUTDOWNANIMATION_FILE, "" }; static const std::vector userspaceRebootFiles = { PRODUCT_USERSPACE_REBOOT_ANIMATION_FILE, OEM_USERSPACE_REBOOT_ANIMATION_FILE, SYSTEM_USERSPACE_REBOOT_ANIMATION_FILE, }; if (android::base::GetBoolProperty("sys.init.userspace_reboot.in_progress", false)) { findBootAnimationFileInternal(userspaceRebootFiles); } else if (mShuttingDown) { findBootAnimationFileInternal(shutdownFiles); } else { findBootAnimationFileInternal(bootFiles); } } GLuint compileShader(GLenum shaderType, const GLchar *source) { GLuint shader = glCreateShader(shaderType); glShaderSource(shader, 1, &source, 0); glCompileShader(shader); GLint isCompiled = 0; glGetShaderiv(shader, GL_COMPILE_STATUS, &isCompiled); if (isCompiled == GL_FALSE) { SLOGE("Compile shader failed. Shader type: %d", shaderType); GLint maxLength = 0; glGetShaderiv(shader, GL_INFO_LOG_LENGTH, &maxLength); std::vector errorLog(maxLength); glGetShaderInfoLog(shader, maxLength, &maxLength, &errorLog[0]); SLOGE("Shader compilation error: %s", &errorLog[0]); return 0; } return shader; } GLuint linkShader(GLuint vertexShader, GLuint fragmentShader) { GLuint program = glCreateProgram(); glAttachShader(program, vertexShader); glAttachShader(program, fragmentShader); glLinkProgram(program); GLint isLinked = 0; glGetProgramiv(program, GL_LINK_STATUS, (int *)&isLinked); if (isLinked == GL_FALSE) { SLOGE("Linking shader failed. Shader handles: vert %d, frag %d", vertexShader, fragmentShader); return 0; } return program; } void BootAnimation::initShaders() { bool dynamicColoringEnabled = mAnimation != nullptr && mAnimation->dynamicColoringEnabled; GLuint vertexShader = compileShader(GL_VERTEX_SHADER, (const GLchar *)VERTEX_SHADER_SOURCE); GLuint imageFragmentShader = compileShader(GL_FRAGMENT_SHADER, dynamicColoringEnabled ? (const GLchar *)IMAGE_FRAG_DYNAMIC_COLORING_SHADER_SOURCE : (const GLchar *)IMAGE_FRAG_SHADER_SOURCE); GLuint textFragmentShader = compileShader(GL_FRAGMENT_SHADER, (const GLchar *)TEXT_FRAG_SHADER_SOURCE); // Initialize image shader. mImageShader = linkShader(vertexShader, imageFragmentShader); GLint positionLocation = glGetAttribLocation(mImageShader, A_POSITION); GLint uvLocation = glGetAttribLocation(mImageShader, A_UV); mImageTextureLocation = glGetUniformLocation(mImageShader, U_TEXTURE); mImageFadeLocation = glGetUniformLocation(mImageShader, U_FADE); glEnableVertexAttribArray(positionLocation); glVertexAttribPointer(positionLocation, 2, GL_FLOAT, GL_FALSE, 0, quadPositions); glVertexAttribPointer(uvLocation, 2, GL_FLOAT, GL_FALSE, 0, quadUVs); glEnableVertexAttribArray(uvLocation); // Initialize text shader. mTextShader = linkShader(vertexShader, textFragmentShader); positionLocation = glGetAttribLocation(mTextShader, A_POSITION); uvLocation = glGetAttribLocation(mTextShader, A_UV); mTextTextureLocation = glGetUniformLocation(mTextShader, U_TEXTURE); mTextCropAreaLocation = glGetUniformLocation(mTextShader, U_CROP_AREA); glEnableVertexAttribArray(positionLocation); glVertexAttribPointer(positionLocation, 2, GL_FLOAT, GL_FALSE, 0, quadPositions); glVertexAttribPointer(uvLocation, 2, GL_FLOAT, GL_FALSE, 0, quadUVs); glEnableVertexAttribArray(uvLocation); } bool BootAnimation::threadLoop() { bool result; initShaders(); // We have no bootanimation file, so we use the stock android logo // animation. if (mZipFileName.isEmpty()) { ALOGD("No animation file"); result = android(); } else { result = movie(); } mCallbacks->shutdown(); eglMakeCurrent(mDisplay, EGL_NO_SURFACE, EGL_NO_SURFACE, EGL_NO_CONTEXT); eglDestroyContext(mDisplay, mContext); eglDestroySurface(mDisplay, mSurface); mFlingerSurface.clear(); mFlingerSurfaceControl.clear(); eglTerminate(mDisplay); eglReleaseThread(); IPCThreadState::self()->stopProcess(); return result; } bool BootAnimation::android() { glActiveTexture(GL_TEXTURE0); SLOGD("%sAnimationShownTiming start time: %" PRId64 "ms", mShuttingDown ? "Shutdown" : "Boot", elapsedRealtime()); initTexture(&mAndroid[0], mAssets, "images/android-logo-mask.png"); initTexture(&mAndroid[1], mAssets, "images/android-logo-shine.png"); mCallbacks->init({}); // clear screen glDisable(GL_DITHER); glDisable(GL_SCISSOR_TEST); glUseProgram(mImageShader); glClearColor(0,0,0,1); glClear(GL_COLOR_BUFFER_BIT); eglSwapBuffers(mDisplay, mSurface); // Blend state glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); const nsecs_t startTime = systemTime(); do { processDisplayEvents(); const GLint xc = (mWidth - mAndroid[0].w) / 2; const GLint yc = (mHeight - mAndroid[0].h) / 2; const Rect updateRect(xc, yc, xc + mAndroid[0].w, yc + mAndroid[0].h); glScissor(updateRect.left, mHeight - updateRect.bottom, updateRect.width(), updateRect.height()); nsecs_t now = systemTime(); double time = now - startTime; float t = 4.0f * float(time / us2ns(16667)) / mAndroid[1].w; GLint offset = (1 - (t - floorf(t))) * mAndroid[1].w; GLint x = xc - offset; glDisable(GL_SCISSOR_TEST); glClear(GL_COLOR_BUFFER_BIT); glEnable(GL_SCISSOR_TEST); glDisable(GL_BLEND); glBindTexture(GL_TEXTURE_2D, mAndroid[1].name); drawTexturedQuad(x, yc, mAndroid[1].w, mAndroid[1].h); drawTexturedQuad(x + mAndroid[1].w, yc, mAndroid[1].w, mAndroid[1].h); glEnable(GL_BLEND); glBindTexture(GL_TEXTURE_2D, mAndroid[0].name); drawTexturedQuad(xc, yc, mAndroid[0].w, mAndroid[0].h); EGLBoolean res = eglSwapBuffers(mDisplay, mSurface); if (res == EGL_FALSE) break; // 12fps: don't animate too fast to preserve CPU const nsecs_t sleepTime = 83333 - ns2us(systemTime() - now); if (sleepTime > 0) usleep(sleepTime); checkExit(); } while (!exitPending()); glDeleteTextures(1, &mAndroid[0].name); glDeleteTextures(1, &mAndroid[1].name); return false; } void BootAnimation::checkExit() { // Allow surface flinger to gracefully request shutdown char value[PROPERTY_VALUE_MAX]; property_get(EXIT_PROP_NAME, value, "0"); int exitnow = atoi(value); if (exitnow) { requestExit(); } } bool BootAnimation::validClock(const Animation::Part& part) { return part.clockPosX != TEXT_MISSING_VALUE && part.clockPosY != TEXT_MISSING_VALUE; } bool parseTextCoord(const char* str, int* dest) { if (strcmp("c", str) == 0) { *dest = TEXT_CENTER_VALUE; return true; } char* end; int val = (int) strtol(str, &end, 0); if (end == str || *end != '\0' || val == INT_MAX || val == INT_MIN) { return false; } *dest = val; return true; } // Parse two position coordinates. If only string is non-empty, treat it as the y value. void parsePosition(const char* str1, const char* str2, int* x, int* y) { bool success = false; if (strlen(str1) == 0) { // No values were specified // success = false } else if (strlen(str2) == 0) { // we have only one value if (parseTextCoord(str1, y)) { *x = TEXT_CENTER_VALUE; success = true; } } else { if (parseTextCoord(str1, x) && parseTextCoord(str2, y)) { success = true; } } if (!success) { *x = TEXT_MISSING_VALUE; *y = TEXT_MISSING_VALUE; } } // Parse a color represented as an HTML-style 'RRGGBB' string: each pair of // characters in str is a hex number in [0, 255], which are converted to // floating point values in the range [0.0, 1.0] and placed in the // corresponding elements of color. // // If the input string isn't valid, parseColor returns false and color is // left unchanged. static bool parseColor(const char str[7], float color[3]) { float tmpColor[3]; for (int i = 0; i < 3; i++) { int val = 0; for (int j = 0; j < 2; j++) { val *= 16; char c = str[2*i + j]; if (c >= '0' && c <= '9') val += c - '0'; else if (c >= 'A' && c <= 'F') val += (c - 'A') + 10; else if (c >= 'a' && c <= 'f') val += (c - 'a') + 10; else return false; } tmpColor[i] = static_cast(val) / 255.0f; } memcpy(color, tmpColor, sizeof(tmpColor)); return true; } // Parse a color represented as a signed decimal int string. // E.g. "-2757722" (whose hex 2's complement is 0xFFD5EBA6). // If the input color string is empty, set color with values in defaultColor. static void parseColorDecimalString(const std::string& colorString, float color[3], float defaultColor[3]) { if (colorString == "") { memcpy(color, defaultColor, sizeof(float) * 3); return; } int colorInt = atoi(colorString.c_str()); color[0] = ((float)((colorInt >> 16) & 0xFF)) / 0xFF; // r color[1] = ((float)((colorInt >> 8) & 0xFF)) / 0xFF; // g color[2] = ((float)(colorInt & 0xFF)) / 0xFF; // b } static bool readFile(ZipFileRO* zip, const char* name, String8& outString) { ZipEntryRO entry = zip->findEntryByName(name); SLOGE_IF(!entry, "couldn't find %s", name); if (!entry) { return false; } FileMap* entryMap = zip->createEntryFileMap(entry); zip->releaseEntry(entry); SLOGE_IF(!entryMap, "entryMap is null"); if (!entryMap) { return false; } outString.setTo((char const*)entryMap->getDataPtr(), entryMap->getDataLength()); delete entryMap; return true; } // The font image should be a 96x2 array of character images. The // columns are the printable ASCII characters 0x20 - 0x7f. The // top row is regular text; the bottom row is bold. status_t BootAnimation::initFont(Font* font, const char* fallback) { status_t status = NO_ERROR; if (font->map != nullptr) { glGenTextures(1, &font->texture.name); glBindTexture(GL_TEXTURE_2D, font->texture.name); status = initTexture(font->map, &font->texture.w, &font->texture.h); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); } else if (fallback != nullptr) { status = initTexture(&font->texture, mAssets, fallback); } else { return NO_INIT; } if (status == NO_ERROR) { font->char_width = font->texture.w / FONT_NUM_COLS; font->char_height = font->texture.h / FONT_NUM_ROWS / 2; // There are bold and regular rows } return status; } void BootAnimation::drawText(const char* str, const Font& font, bool bold, int* x, int* y) { glEnable(GL_BLEND); // Allow us to draw on top of the animation glBindTexture(GL_TEXTURE_2D, font.texture.name); glUseProgram(mTextShader); glUniform1i(mTextTextureLocation, 0); const int len = strlen(str); const int strWidth = font.char_width * len; if (*x == TEXT_CENTER_VALUE) { *x = (mWidth - strWidth) / 2; } else if (*x < 0) { *x = mWidth + *x - strWidth; } if (*y == TEXT_CENTER_VALUE) { *y = (mHeight - font.char_height) / 2; } else if (*y < 0) { *y = mHeight + *y - font.char_height; } for (int i = 0; i < len; i++) { char c = str[i]; if (c < FONT_BEGIN_CHAR || c > FONT_END_CHAR) { c = '?'; } // Crop the texture to only the pixels in the current glyph const int charPos = (c - FONT_BEGIN_CHAR); // Position in the list of valid characters const int row = charPos / FONT_NUM_COLS; const int col = charPos % FONT_NUM_COLS; // Bold fonts are expected in the second half of each row. float v0 = (row + (bold ? 0.5f : 0.0f)) / FONT_NUM_ROWS; float u0 = ((float)col) / FONT_NUM_COLS; float v1 = v0 + 1.0f / FONT_NUM_ROWS / 2; float u1 = u0 + 1.0f / FONT_NUM_COLS; glUniform4f(mTextCropAreaLocation, u0, v0, u1, v1); drawTexturedQuad(*x, *y, font.char_width, font.char_height); *x += font.char_width; } glDisable(GL_BLEND); // Return to the animation's default behaviour glBindTexture(GL_TEXTURE_2D, 0); } // We render 12 or 24 hour time. void BootAnimation::drawClock(const Font& font, const int xPos, const int yPos) { static constexpr char TIME_FORMAT_12[] = "%l:%M"; static constexpr char TIME_FORMAT_24[] = "%H:%M"; static constexpr int TIME_LENGTH = 6; time_t rawtime; time(&rawtime); struct tm* timeInfo = localtime(&rawtime); char timeBuff[TIME_LENGTH]; const char* timeFormat = mTimeFormat12Hour ? TIME_FORMAT_12 : TIME_FORMAT_24; size_t length = strftime(timeBuff, TIME_LENGTH, timeFormat, timeInfo); if (length != TIME_LENGTH - 1) { SLOGE("Couldn't format time; abandoning boot animation clock"); mClockEnabled = false; return; } char* out = timeBuff[0] == ' ' ? &timeBuff[1] : &timeBuff[0]; int x = xPos; int y = yPos; drawText(out, font, false, &x, &y); } void BootAnimation::drawProgress(int percent, const Font& font, const int xPos, const int yPos) { static constexpr int PERCENT_LENGTH = 5; char percentBuff[PERCENT_LENGTH]; // ';' has the ascii code just after ':', and the font resource contains '%' // for that ascii code. sprintf(percentBuff, "%d;", percent); int x = xPos; int y = yPos; drawText(percentBuff, font, false, &x, &y); } bool BootAnimation::parseAnimationDesc(Animation& animation) { String8 desString; if (!readFile(animation.zip, "desc.txt", desString)) { return false; } char const* s = desString.string(); std::string dynamicColoringPartName = ""; bool postDynamicColoring = false; // Parse the description file for (;;) { const char* endl = strstr(s, "\n"); if (endl == nullptr) break; String8 line(s, endl - s); const char* l = line.string(); int fps = 0; int width = 0; int height = 0; int count = 0; int pause = 0; int progress = 0; int framesToFadeCount = 0; int colorTransitionStart = 0; int colorTransitionEnd = 0; char path[ANIM_ENTRY_NAME_MAX]; char color[7] = "000000"; // default to black if unspecified char clockPos1[TEXT_POS_LEN_MAX + 1] = ""; char clockPos2[TEXT_POS_LEN_MAX + 1] = ""; char dynamicColoringPartNameBuffer[ANIM_ENTRY_NAME_MAX]; char pathType; // start colors default to black if unspecified char start_color_0[7] = "000000"; char start_color_1[7] = "000000"; char start_color_2[7] = "000000"; char start_color_3[7] = "000000"; int nextReadPos; int topLineNumbers = sscanf(l, "%d %d %d %d", &width, &height, &fps, &progress); if (topLineNumbers == 3 || topLineNumbers == 4) { // SLOGD("> w=%d, h=%d, fps=%d, progress=%d", width, height, fps, progress); animation.width = width; animation.height = height; animation.fps = fps; if (topLineNumbers == 4) { animation.progressEnabled = (progress != 0); } else { animation.progressEnabled = false; } } else if (sscanf(l, "dynamic_colors %" STRTO(ANIM_PATH_MAX) "s #%6s #%6s #%6s #%6s %d %d", dynamicColoringPartNameBuffer, start_color_0, start_color_1, start_color_2, start_color_3, &colorTransitionStart, &colorTransitionEnd)) { animation.dynamicColoringEnabled = true; parseColor(start_color_0, animation.startColors[0]); parseColor(start_color_1, animation.startColors[1]); parseColor(start_color_2, animation.startColors[2]); parseColor(start_color_3, animation.startColors[3]); animation.colorTransitionStart = colorTransitionStart; animation.colorTransitionEnd = colorTransitionEnd; dynamicColoringPartName = std::string(dynamicColoringPartNameBuffer); } else if (sscanf(l, "%c %d %d %" STRTO(ANIM_PATH_MAX) "s%n", &pathType, &count, &pause, path, &nextReadPos) >= 4) { if (pathType == 'f') { sscanf(l + nextReadPos, " %d #%6s %16s %16s", &framesToFadeCount, color, clockPos1, clockPos2); } else { sscanf(l + nextReadPos, " #%6s %16s %16s", color, clockPos1, clockPos2); } // SLOGD("> type=%c, count=%d, pause=%d, path=%s, framesToFadeCount=%d, color=%s, " // "clockPos1=%s, clockPos2=%s", // pathType, count, pause, path, framesToFadeCount, color, clockPos1, clockPos2); Animation::Part part; if (path == dynamicColoringPartName) { // Part is specified to use dynamic coloring. part.useDynamicColoring = true; part.postDynamicColoring = false; postDynamicColoring = true; } else { // Part does not use dynamic coloring. part.useDynamicColoring = false; part.postDynamicColoring = postDynamicColoring; } part.playUntilComplete = pathType == 'c'; part.framesToFadeCount = framesToFadeCount; part.count = count; part.pause = pause; part.path = path; part.audioData = nullptr; part.animation = nullptr; if (!parseColor(color, part.backgroundColor)) { SLOGE("> invalid color '#%s'", color); part.backgroundColor[0] = 0.0f; part.backgroundColor[1] = 0.0f; part.backgroundColor[2] = 0.0f; } parsePosition(clockPos1, clockPos2, &part.clockPosX, &part.clockPosY); animation.parts.add(part); } else if (strcmp(l, "$SYSTEM") == 0) { // SLOGD("> SYSTEM"); Animation::Part part; part.playUntilComplete = false; part.framesToFadeCount = 0; part.count = 1; part.pause = 0; part.audioData = nullptr; part.animation = loadAnimation(String8(SYSTEM_BOOTANIMATION_FILE)); if (part.animation != nullptr) animation.parts.add(part); } s = ++endl; } return true; } bool BootAnimation::preloadZip(Animation& animation) { // read all the data structures const size_t pcount = animation.parts.size(); void *cookie = nullptr; ZipFileRO* zip = animation.zip; if (!zip->startIteration(&cookie)) { return false; } ZipEntryRO entry; char name[ANIM_ENTRY_NAME_MAX]; while ((entry = zip->nextEntry(cookie)) != nullptr) { const int foundEntryName = zip->getEntryFileName(entry, name, ANIM_ENTRY_NAME_MAX); if (foundEntryName > ANIM_ENTRY_NAME_MAX || foundEntryName == -1) { SLOGE("Error fetching entry file name"); continue; } const String8 entryName(name); const String8 path(entryName.getPathDir()); const String8 leaf(entryName.getPathLeaf()); if (leaf.size() > 0) { if (entryName == CLOCK_FONT_ZIP_NAME) { FileMap* map = zip->createEntryFileMap(entry); if (map) { animation.clockFont.map = map; } continue; } if (entryName == PROGRESS_FONT_ZIP_NAME) { FileMap* map = zip->createEntryFileMap(entry); if (map) { animation.progressFont.map = map; } continue; } for (size_t j = 0; j < pcount; j++) { if (path == animation.parts[j].path) { uint16_t method; // supports only stored png files if (zip->getEntryInfo(entry, &method, nullptr, nullptr, nullptr, nullptr, nullptr)) { if (method == ZipFileRO::kCompressStored) { FileMap* map = zip->createEntryFileMap(entry); if (map) { Animation::Part& part(animation.parts.editItemAt(j)); if (leaf == "audio.wav") { // a part may have at most one audio file part.audioData = (uint8_t *)map->getDataPtr(); part.audioLength = map->getDataLength(); } else if (leaf == "trim.txt") { part.trimData.setTo((char const*)map->getDataPtr(), map->getDataLength()); } else { Animation::Frame frame; frame.name = leaf; frame.map = map; frame.trimWidth = animation.width; frame.trimHeight = animation.height; frame.trimX = 0; frame.trimY = 0; part.frames.add(frame); } } } else { SLOGE("bootanimation.zip is compressed; must be only stored"); } } } } } } // If there is trimData present, override the positioning defaults. for (Animation::Part& part : animation.parts) { const char* trimDataStr = part.trimData.string(); for (size_t frameIdx = 0; frameIdx < part.frames.size(); frameIdx++) { const char* endl = strstr(trimDataStr, "\n"); // No more trimData for this part. if (endl == nullptr) { break; } String8 line(trimDataStr, endl - trimDataStr); const char* lineStr = line.string(); trimDataStr = ++endl; int width = 0, height = 0, x = 0, y = 0; if (sscanf(lineStr, "%dx%d+%d+%d", &width, &height, &x, &y) == 4) { Animation::Frame& frame(part.frames.editItemAt(frameIdx)); frame.trimWidth = width; frame.trimHeight = height; frame.trimX = x; frame.trimY = y; } else { SLOGE("Error parsing trim.txt, line: %s", lineStr); break; } } } zip->endIteration(cookie); return true; } bool BootAnimation::movie() { if (mAnimation == nullptr) { mAnimation = loadAnimation(mZipFileName); } if (mAnimation == nullptr) return false; // mCallbacks->init() may get called recursively, // this loop is needed to get the same results for (const Animation::Part& part : mAnimation->parts) { if (part.animation != nullptr) { mCallbacks->init(part.animation->parts); } } mCallbacks->init(mAnimation->parts); bool anyPartHasClock = false; for (size_t i=0; i < mAnimation->parts.size(); i++) { if(validClock(mAnimation->parts[i])) { anyPartHasClock = true; break; } } if (!anyPartHasClock) { mClockEnabled = false; } else if (!android::base::GetBoolProperty(CLOCK_ENABLED_PROP_NAME, false)) { mClockEnabled = false; } // Check if npot textures are supported mUseNpotTextures = false; String8 gl_extensions; const char* exts = reinterpret_cast(glGetString(GL_EXTENSIONS)); if (!exts) { glGetError(); } else { gl_extensions.setTo(exts); if ((gl_extensions.find("GL_ARB_texture_non_power_of_two") != -1) || (gl_extensions.find("GL_OES_texture_npot") != -1)) { mUseNpotTextures = true; } } // Blend required to draw time on top of animation frames. glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); glDisable(GL_DITHER); glDisable(GL_SCISSOR_TEST); glDisable(GL_BLEND); glEnable(GL_TEXTURE_2D); glBindTexture(GL_TEXTURE_2D, 0); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); bool clockFontInitialized = false; if (mClockEnabled) { clockFontInitialized = (initFont(&mAnimation->clockFont, CLOCK_FONT_ASSET) == NO_ERROR); mClockEnabled = clockFontInitialized; } initFont(&mAnimation->progressFont, PROGRESS_FONT_ASSET); if (mClockEnabled && !updateIsTimeAccurate()) { mTimeCheckThread = new TimeCheckThread(this); mTimeCheckThread->run("BootAnimation::TimeCheckThread", PRIORITY_NORMAL); } if (mAnimation->dynamicColoringEnabled) { initDynamicColors(); } playAnimation(*mAnimation); if (mTimeCheckThread != nullptr) { mTimeCheckThread->requestExit(); mTimeCheckThread = nullptr; } if (clockFontInitialized) { glDeleteTextures(1, &mAnimation->clockFont.texture.name); } releaseAnimation(mAnimation); mAnimation = nullptr; return false; } bool BootAnimation::shouldStopPlayingPart(const Animation::Part& part, const int fadedFramesCount, const int lastDisplayedProgress) { // stop playing only if it is time to exit and it's a partial part which has been faded out return exitPending() && !part.playUntilComplete && fadedFramesCount >= part.framesToFadeCount && (lastDisplayedProgress == 0 || lastDisplayedProgress == 100); } // Linear mapping from range to range float mapLinear(float x, float a1, float a2, float b1, float b2) { return b1 + ( x - a1 ) * ( b2 - b1 ) / ( a2 - a1 ); } void BootAnimation::drawTexturedQuad(float xStart, float yStart, float width, float height) { // Map coordinates from screen space to world space. float x0 = mapLinear(xStart, 0, mWidth, -1, 1); float y0 = mapLinear(yStart, 0, mHeight, -1, 1); float x1 = mapLinear(xStart + width, 0, mWidth, -1, 1); float y1 = mapLinear(yStart + height, 0, mHeight, -1, 1); // Update quad vertex positions. quadPositions[0] = x0; quadPositions[1] = y0; quadPositions[2] = x1; quadPositions[3] = y0; quadPositions[4] = x1; quadPositions[5] = y1; quadPositions[6] = x1; quadPositions[7] = y1; quadPositions[8] = x0; quadPositions[9] = y1; quadPositions[10] = x0; quadPositions[11] = y0; glDrawArrays(GL_TRIANGLES, 0, sizeof(quadPositions) / sizeof(quadPositions[0]) / 2); } void BootAnimation::initDynamicColors() { for (int i = 0; i < DYNAMIC_COLOR_COUNT; i++) { const auto syspropName = "persist.bootanim.color" + std::to_string(i + 1); const auto syspropValue = android::base::GetProperty(syspropName, ""); if (syspropValue != "") { SLOGI("Loaded dynamic color: %s -> %s", syspropName.c_str(), syspropValue.c_str()); mDynamicColorsApplied = true; } parseColorDecimalString(syspropValue, mAnimation->endColors[i], mAnimation->startColors[i]); } glUseProgram(mImageShader); SLOGI("Dynamically coloring boot animation. Sysprops loaded? %i", mDynamicColorsApplied); for (int i = 0; i < DYNAMIC_COLOR_COUNT; i++) { float *startColor = mAnimation->startColors[i]; float *endColor = mAnimation->endColors[i]; glUniform4f(glGetUniformLocation(mImageShader, (U_START_COLOR_PREFIX + std::to_string(i)).c_str()), startColor[0], startColor[1], startColor[2], 1 /* alpha */); glUniform4f(glGetUniformLocation(mImageShader, (U_END_COLOR_PREFIX + std::to_string(i)).c_str()), endColor[0], endColor[1], endColor[2], 1 /* alpha */); } mImageColorProgressLocation = glGetUniformLocation(mImageShader, U_COLOR_PROGRESS); } bool BootAnimation::playAnimation(const Animation& animation) { const size_t pcount = animation.parts.size(); nsecs_t frameDuration = s2ns(1) / animation.fps; SLOGD("%sAnimationShownTiming start time: %" PRId64 "ms", mShuttingDown ? "Shutdown" : "Boot", elapsedRealtime()); int fadedFramesCount = 0; int lastDisplayedProgress = 0; int colorTransitionStart = animation.colorTransitionStart; int colorTransitionEnd = animation.colorTransitionEnd; for (size_t i=0 ; i 0 ; r++) { if (shouldStopPlayingPart(part, fadedFramesCount, lastDisplayedProgress)) break; // It's possible that the sysprops were not loaded yet at this boot phase. // If that's the case, then we should keep trying until they are available. if (animation.dynamicColoringEnabled && !mDynamicColorsApplied && (part.useDynamicColoring || part.postDynamicColoring)) { SLOGD("Trying to load dynamic color sysprops."); initDynamicColors(); if (mDynamicColorsApplied) { // Sysprops were loaded. Next step is to adjust the animation if we loaded // the colors after the animation should have started. const int transitionLength = colorTransitionEnd - colorTransitionStart; if (part.postDynamicColoring) { colorTransitionStart = 0; colorTransitionEnd = fmin(transitionLength, fcount - 1); } } } mCallbacks->playPart(i, part, r); glClearColor( part.backgroundColor[0], part.backgroundColor[1], part.backgroundColor[2], 1.0f); ALOGD("Playing files = %s/%s, Requested repeat = %d, playUntilComplete = %s", animation.fileName.string(), part.path.string(), part.count, part.playUntilComplete ? "true" : "false"); // For the last animation, if we have progress indicator from // the system, display it. int currentProgress = android::base::GetIntProperty(PROGRESS_PROP_NAME, 0); bool displayProgress = animation.progressEnabled && (i == (pcount -1)) && currentProgress != 0; for (size_t j=0 ; j(mWidth) / mInitWidth; const double ratio_h = static_cast(mHeight) / mInitHeight; const int animationX = (mWidth - animation.width * ratio_w) / 2; const int animationY = (mHeight - animation.height * ratio_h) / 2; const Animation::Frame& frame(part.frames[j]); nsecs_t lastFrame = systemTime(); if (r > 0) { glBindTexture(GL_TEXTURE_2D, frame.tid); } else { glGenTextures(1, &frame.tid); glBindTexture(GL_TEXTURE_2D, frame.tid); int w, h; // Set decoding option to alpha unpremultiplied so that the R, G, B channels // of transparent pixels are preserved. initTexture(frame.map, &w, &h, false /* don't premultiply alpha */); } const int trimWidth = frame.trimWidth * ratio_w; const int trimHeight = frame.trimHeight * ratio_h; const int trimX = frame.trimX * ratio_w; const int trimY = frame.trimY * ratio_h; const int xc = animationX + trimX; const int yc = animationY + trimY; glClear(GL_COLOR_BUFFER_BIT); // specify the y center as ceiling((mHeight - frame.trimHeight) / 2) // which is equivalent to mHeight - (yc + frame.trimHeight) const int frameDrawY = mHeight - (yc + trimHeight); float fade = 0; // if the part hasn't been stopped yet then continue fading if necessary if (exitPending() && part.hasFadingPhase()) { fade = static_cast(++fadedFramesCount) / part.framesToFadeCount; if (fadedFramesCount >= part.framesToFadeCount) { fadedFramesCount = MAX_FADED_FRAMES_COUNT; // no more fading } } glUseProgram(mImageShader); glUniform1i(mImageTextureLocation, 0); glUniform1f(mImageFadeLocation, fade); if (animation.dynamicColoringEnabled) { glUniform1f(mImageColorProgressLocation, colorProgress); } glEnable(GL_BLEND); drawTexturedQuad(xc, frameDrawY, trimWidth, trimHeight); glDisable(GL_BLEND); if (mClockEnabled && mTimeIsAccurate && validClock(part)) { drawClock(animation.clockFont, part.clockPosX, part.clockPosY); } if (displayProgress) { int newProgress = android::base::GetIntProperty(PROGRESS_PROP_NAME, 0); // In case the new progress jumped suddenly, still show an // increment of 1. if (lastDisplayedProgress != 100) { // Artificially sleep 1/10th a second to slow down the animation. usleep(100000); if (lastDisplayedProgress < newProgress) { lastDisplayedProgress++; } } // Put the progress percentage right below the animation. int posY = animation.height / 3; int posX = TEXT_CENTER_VALUE; drawProgress(lastDisplayedProgress, animation.progressFont, posX, posY); } handleViewport(frameDuration); eglSwapBuffers(mDisplay, mSurface); nsecs_t now = systemTime(); nsecs_t delay = frameDuration - (now - lastFrame); //SLOGD("%lld, %lld", ns2ms(now - lastFrame), ns2ms(delay)); lastFrame = now; if (delay > 0) { struct timespec spec; spec.tv_sec = (now + delay) / 1000000000; spec.tv_nsec = (now + delay) % 1000000000; int err; do { err = clock_nanosleep(CLOCK_MONOTONIC, TIMER_ABSTIME, &spec, nullptr); } while (err == EINTR); } checkExit(); } usleep(part.pause * ns2us(frameDuration)); if (exitPending() && !part.count && mCurrentInset >= mTargetInset && !part.hasFadingPhase()) { if (lastDisplayedProgress != 0 && lastDisplayedProgress != 100) { android::base::SetProperty(PROGRESS_PROP_NAME, "100"); continue; } break; // exit the infinite non-fading part when it has been played at least once } } } // Free textures created for looping parts now that the animation is done. for (const Animation::Part& part : animation.parts) { if (part.count != 1) { const size_t fcount = part.frames.size(); for (size_t j = 0; j < fcount; j++) { const Animation::Frame& frame(part.frames[j]); glDeleteTextures(1, &frame.tid); } } } ALOGD("%sAnimationShownTiming End time: %" PRId64 "ms", mShuttingDown ? "Shutdown" : "Boot", elapsedRealtime()); return true; } void BootAnimation::processDisplayEvents() { // This will poll mDisplayEventReceiver and if there are new events it'll call // displayEventCallback synchronously. mLooper->pollOnce(0); } void BootAnimation::handleViewport(nsecs_t timestep) { if (mShuttingDown || !mFlingerSurfaceControl || mTargetInset == 0) { return; } if (mTargetInset < 0) { // Poll the amount for the top display inset. This will return -1 until persistent properties // have been loaded. mTargetInset = android::base::GetIntProperty("persist.sys.displayinset.top", -1 /* default */, -1 /* min */, mHeight / 2 /* max */); } if (mTargetInset <= 0) { return; } if (mCurrentInset < mTargetInset) { // After the device boots, the inset will effectively be cropped away. We animate this here. float fraction = static_cast(mCurrentInset) / mTargetInset; int interpolatedInset = (cosf((fraction + 1) * M_PI) / 2.0f + 0.5f) * mTargetInset; SurfaceComposerClient::Transaction() .setCrop(mFlingerSurfaceControl, Rect(0, interpolatedInset, mWidth, mHeight)) .apply(); } else { // At the end of the animation, we switch to the viewport that DisplayManager will apply // later. This changes the coordinate system, and means we must move the surface up by // the inset amount. Rect layerStackRect(0, 0, mWidth, mHeight - mTargetInset); Rect displayRect(0, mTargetInset, mWidth, mHeight); SurfaceComposerClient::Transaction t; t.setPosition(mFlingerSurfaceControl, 0, -mTargetInset) .setCrop(mFlingerSurfaceControl, Rect(0, mTargetInset, mWidth, mHeight)); t.setDisplayProjection(mDisplayToken, ui::ROTATION_0, layerStackRect, displayRect); t.apply(); mTargetInset = mCurrentInset = 0; } int delta = timestep * mTargetInset / ms2ns(200); mCurrentInset += delta; } void BootAnimation::releaseAnimation(Animation* animation) const { for (Vector::iterator it = animation->parts.begin(), e = animation->parts.end(); it != e; ++it) { if (it->animation) releaseAnimation(it->animation); } if (animation->zip) delete animation->zip; delete animation; } BootAnimation::Animation* BootAnimation::loadAnimation(const String8& fn) { if (mLoadedFiles.indexOf(fn) >= 0) { SLOGE("File \"%s\" is already loaded. Cyclic ref is not allowed", fn.string()); return nullptr; } ZipFileRO *zip = ZipFileRO::open(fn); if (zip == nullptr) { SLOGE("Failed to open animation zip \"%s\": %s", fn.string(), strerror(errno)); return nullptr; } ALOGD("%s is loaded successfully", fn.string()); Animation *animation = new Animation; animation->fileName = fn; animation->zip = zip; animation->clockFont.map = nullptr; mLoadedFiles.add(animation->fileName); parseAnimationDesc(*animation); if (!preloadZip(*animation)) { releaseAnimation(animation); return nullptr; } mLoadedFiles.remove(fn); return animation; } bool BootAnimation::updateIsTimeAccurate() { static constexpr long long MAX_TIME_IN_PAST = 60000LL * 60LL * 24LL * 30LL; // 30 days static constexpr long long MAX_TIME_IN_FUTURE = 60000LL * 90LL; // 90 minutes if (mTimeIsAccurate) { return true; } if (mShuttingDown) return true; struct stat statResult; if(stat(TIME_FORMAT_12_HOUR_FLAG_FILE_PATH, &statResult) == 0) { mTimeFormat12Hour = true; } if(stat(ACCURATE_TIME_FLAG_FILE_PATH, &statResult) == 0) { mTimeIsAccurate = true; return true; } FILE* file = fopen(LAST_TIME_CHANGED_FILE_PATH, "r"); if (file != nullptr) { long long lastChangedTime = 0; fscanf(file, "%lld", &lastChangedTime); fclose(file); if (lastChangedTime > 0) { struct timespec now; clock_gettime(CLOCK_REALTIME, &now); // Match the Java timestamp format long long rtcNow = (now.tv_sec * 1000LL) + (now.tv_nsec / 1000000LL); if (ACCURATE_TIME_EPOCH < rtcNow && lastChangedTime > (rtcNow - MAX_TIME_IN_PAST) && lastChangedTime < (rtcNow + MAX_TIME_IN_FUTURE)) { mTimeIsAccurate = true; } } } return mTimeIsAccurate; } BootAnimation::TimeCheckThread::TimeCheckThread(BootAnimation* bootAnimation) : Thread(false), mInotifyFd(-1), mBootAnimWd(-1), mTimeWd(-1), mBootAnimation(bootAnimation) {} BootAnimation::TimeCheckThread::~TimeCheckThread() { // mInotifyFd may be -1 but that's ok since we're not at risk of attempting to close a valid FD. close(mInotifyFd); } bool BootAnimation::TimeCheckThread::threadLoop() { bool shouldLoop = doThreadLoop() && !mBootAnimation->mTimeIsAccurate && mBootAnimation->mClockEnabled; if (!shouldLoop) { close(mInotifyFd); mInotifyFd = -1; } return shouldLoop; } bool BootAnimation::TimeCheckThread::doThreadLoop() { static constexpr int BUFF_LEN (10 * (sizeof(struct inotify_event) + NAME_MAX + 1)); // Poll instead of doing a blocking read so the Thread can exit if requested. struct pollfd pfd = { mInotifyFd, POLLIN, 0 }; ssize_t pollResult = poll(&pfd, 1, 1000); if (pollResult == 0) { return true; } else if (pollResult < 0) { SLOGE("Could not poll inotify events"); return false; } char buff[BUFF_LEN] __attribute__ ((aligned(__alignof__(struct inotify_event))));; ssize_t length = read(mInotifyFd, buff, BUFF_LEN); if (length == 0) { return true; } else if (length < 0) { SLOGE("Could not read inotify events"); return false; } const struct inotify_event *event; for (char* ptr = buff; ptr < buff + length; ptr += sizeof(struct inotify_event) + event->len) { event = (const struct inotify_event *) ptr; if (event->wd == mBootAnimWd && strcmp(BOOTANIM_TIME_DIR_NAME, event->name) == 0) { addTimeDirWatch(); } else if (event->wd == mTimeWd && (strcmp(LAST_TIME_CHANGED_FILE_NAME, event->name) == 0 || strcmp(ACCURATE_TIME_FLAG_FILE_NAME, event->name) == 0)) { return !mBootAnimation->updateIsTimeAccurate(); } } return true; } void BootAnimation::TimeCheckThread::addTimeDirWatch() { mTimeWd = inotify_add_watch(mInotifyFd, BOOTANIM_TIME_DIR_PATH, IN_CLOSE_WRITE | IN_MOVED_TO | IN_ATTRIB); if (mTimeWd > 0) { // No need to watch for the time directory to be created if it already exists inotify_rm_watch(mInotifyFd, mBootAnimWd); mBootAnimWd = -1; } } status_t BootAnimation::TimeCheckThread::readyToRun() { mInotifyFd = inotify_init(); if (mInotifyFd < 0) { SLOGE("Could not initialize inotify fd"); return NO_INIT; } mBootAnimWd = inotify_add_watch(mInotifyFd, BOOTANIM_DATA_DIR_PATH, IN_CREATE | IN_ATTRIB); if (mBootAnimWd < 0) { close(mInotifyFd); mInotifyFd = -1; SLOGE("Could not add watch for %s: %s", BOOTANIM_DATA_DIR_PATH, strerror(errno)); return NO_INIT; } addTimeDirWatch(); if (mBootAnimation->updateIsTimeAccurate()) { close(mInotifyFd); mInotifyFd = -1; return ALREADY_EXISTS; } return NO_ERROR; } // --------------------------------------------------------------------------- } // namespace android